Skip navigation
Silicon Wafers and Microcircuits,slice of semiconductor material Alamy

Semiconductor Advancement: Is Moore's Law Finally Dead?

Semiconductor progress continues to advance, but is a slowdown inevitable? Opinions differ.

According to the IEEE’s IRDS Technical Community, over 100 billion integrated circuits are used daily internationally. The demand for ICs continues to grow in large part due to advancements in the rapidly developing markets for artificial intelligence, autonomous vehicles, and the Internet of Things (IoT).

So far, the semiconductor industry has managed to build increasingly powerful integrated devices, allowing electronic innovations to develop at a staggering rate. But can such progress be sustained, or is a slowdown inevitable?

Promising Advancements

Semiconductor companies will continue working toward achieving greater chip power efficiency as well as developing AI chips tailored for specific applications, predicts Syed Alam, global semiconductor lead at business advisory firm Accenture, in an email interview. “Such chips will allow more efficient processing of AI-related tasks,” he notes.

Alam adds that advancements in chiplet design and high numerical aperture extreme ultraviolet lithography (high NA EUV) will also contribute to continued success in making semiconductors ever smaller.

The semiconductor industry is likely to see several advancements in the coming years as it strives to achieve its goal of reaching $1 trillion in revenue by 2030, predicts Wayne Rickard, CEO of next-generation materials and processes firm Terecircuits, via email. He observes that a significant trend is the continued miniaturization of components, with producers pushing existing boundaries to develop smaller and more advanced fabrication processes.

Taiwan-based firm TSMC, for example, has already achieved a two-nanometer process, entering the angstrom range and approaching the size of a silicon atom, Rickard explains. “However, the diminishing returns and increasing costs associated with building fabs at such small nodes are becoming apparent,” he says. To address this challenge, the semiconductor industry is exploring alternative approaches to design and manufacturing. “One key strategy involves the disaggregation of functions, recognizing that not all components need to be on the latest, smallest process node for optimal performance.”

Device specialization is also transforming the semiconductor industry. “This includes componentry for processing, such as CPUs, GPUs and TPUs,” says Pete Hazen, corporate vice president of Microchip Technology’s data center solutions business unit in an email interview. “We also expect to see advancements with different approaches to power generation, through utilizing materials such as silicon carbide and gallium nitride.”

Read the rest of this article in InformationWeek

Hide comments

Comments

  • Allowed HTML tags: <em> <strong> <blockquote> <br> <p>

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Publish