Improving Cooling Systems Efficiency

The 2011 version ASHRAE’s guidelines, openly endorsed “free cooling”. This would have been considered heresy by many only a few years ago, and some are still in shock and have difficulty accepting this new outlook toward less tightly controlled environmental conditions in the data center.

The opportunity to save significant amounts of cooling energy by moderating the cooling requirements and the expanded use of “free cooling” is enormous. However, due to the highly conservative and risk adverse nature of the industry this will take a while to become a widespread and common practice. Clearly some have begun to slowly explore raising the temperatures a few degrees to gather some experience and to see if they experience any operational issues with the IT equipment. Ultimately, it is a question of whether the energy (and cost) saved, is worth the risk (perceived or real) of potential equipment failures due to higher temperatures (and perhaps wider humidity).

There are clearly some legitimate reasons to keep lower temperatures; the first is a concern of loss of thermal ride-through time in the event of a brief loss of cooling, this is especially true for higher density cabinets, where an event of only a few minutes would cause an unacceptably high intake IT temperature. This can occur during the loss of utility power, and the subsequent transfer to back-up generator, which while it typically takes 30 second or less, will cause most compressors in chillers or CRAC units to recycle and remain off for 5–10 minutes or more. While there are some ways to minimize or mitigate this risk, is a valid concern.

The other concern is also another common issue; the wide variations in IT equipment intake temperatures that occur in most data centers due to airflow mixing and bypass air from less than ideal airflow management. Most sites resort to over cooling the supply air so that the worst areas (typically end-of-aisles and top of racks) of higher density areas do not overheat from re-circulated warm air from the hot aisles.

However, if better airflow management is implemented to minimize hotspots, it would allow intake temperatures to be slowly raised beyond the conservative 68–70°F. This can be accomplished by a variety of means such as; to the spreading out and balancing rack level heat load, and adjusting the airflow to match the heat load, as well as better segregation of hot and cold air via blanking panels in the racks and the use of containment systems. If done properly, it is more likely that within one to two years, 75–77°F in the cold aisle would no longer be a cause for alarm to IT users. The key to this is to improve communications and educate both the IT and facilities management about the importance of air management and the opportunity for energy savings, without reducing equipment reliability.

For the complete series on data center energy efficiency download the Data Center Knowledge Executive Guide on Data Center Energy Efficiency in a PDF format compliments of Digital Realty.

Pages: 1 2

Get Daily Email News from DCK!
Subscribe now and get our special report, "The World's Most Unique Data Centers."

Enter your email to receive messages about offerings by Penton, its brands, affiliates and/or third-party partners, consistent with Penton's Privacy Policy.

About the Author

Add Your Comments

  • (will not be published)

One Comment